Climate and Disease in Medieval Eurasia (2024)

  • 1. Monica H. Green, “The Globalisations of Disease,” in Human Dispersal and Species Movement: From Prehistory to the Present, eds. Nicole Boivin, Rémy Crassard, and Michael D. Petraglia, 494–520 (Cambridge, UK: Cambridge University Press, 2017). The interpretation of leprosy’s possible Eurasian origin that I give below differs from my previously published statements, which followed the earlier theories of geneticists.

  • 2. Stephen Boyanton, “The Treatise on Cold Damage and the Formation of Literati Medicine: Social, Epidemiological, and Medical Change in China, 1000–1400,” PhD diss., Columbia University, 2015, adopts the concept of epidemiological frontiers from Asaf Goldschmidt, “Epidemics and Medicine during the Northern Song Dynasty: Revival of Cold Damage Disorders (Shanghan),” T’oung Pao 93 (2007): 53–109.

  • 3. Kyle Harper, “Pandemics and Passages to Late Antiquity: Rethinking the Plague of c. 249–270 Described by Cyprian,” Journal of Roman Archaeology 28 (2015): 223–260.

  • 4. Emmanuel Le Roy Ladurie, “Un concept: l’unification microbienne du monde (XVIe–XVIIe siècles),” Schweizerische Zeitschrift für Geschichte 23, no. 4 (1973): 627–696. An abbreviated English translation is also available: Emmanuel Le Roy Ladurie, “A Concept: The Unification of the Globe by Disease,” trans. Sian Reynolds and Ben Reynolds, in The Mind and Method of the Historian, 28–83 (London: Harvester, 1981).

  • 5. Novel methods continue to be attempted, nevertheless. See, for example, Stuart Borsch and Tarek Sabraa, “Plague Mortality in Late Medieval Cairo: Quantifying the Plague Outbreaks of 833/1430 and 864/1460,” Mamluk Studies Review 19 (2016): 57–90; and Stuart Borsch and Tarek Sabraa, “Refugees of the Black Death: Quantifying Rural Migration for Plague and Other Environmental Disasters,” Annales de Démographie Historique 2017 N°2, no. 134, 63–93.

  • 6. For example, David Stucki et al., “Mycobacterium tuberculosis Lineage 4 Comprises Globally Distributed and Geographically Restricted Sublineages,” Nature Genetics 48 (2016): 1535–1543.

  • 7. I have omitted a survey of tuberculosis from the present article, not because it was not present in medieval Eurasia (it clearly was), nor even because it has not seen major advances in research of late (it has), but because no clear narrative has yet emerged of its development or geographic spread. See Green 2017, 499–502. Speculative historical studies based on phylogenetics of the Mycobacterium tuberculosis. Complex include the following: Igor Mokrousov et al., “Emerging Peak on the Phylogeographic Landscape of Mycobacterium tuberculosis in West Asia: Definitely Smoke, Likely Fire,” Molecular Phylogenetics and Evolution 116 (2017): 202–212; and Mary B. O’Neill, Andrew Kitchen, Alex Zarley, William Aylward, Vegard Eldholm, and Caitlin S Pepperell, “Lineage Specific Histories of Mycobacterium tuberculosis Dispersal in Africa and Eurasia,” bioRxiv (Oct. 27, 2017).

  • 8. Timothy P. Newfield, “A Cattle Panzootic in Early Fourteenth-Century Europe,” Agricultural History Review 57, no. 2 (2009): 155–190; Timothy P. Newfield, “Human–Bovine Plagues in the Early Middle Ages,” Journal of Interdisciplinary History 46, no. 1 (Summer 2015): 1–38; Timothy P. Newfield, “Domesticates, Disease and Climate in Early Post-Classical Europe: The Cattle Plague of c. 940 and its Environmental Context,” PCA: European Journal of Postclassical Archaeologies 5 (2015): 95–126; Bruce M. S. Campbell, “Panzootics, Pandemics and Climatic Anomalies in the Fourteenth Century,” in Beiträge zum Göttinger Umwelthistorischen Kolloquium 2010–2011, ed. Bernd Herrmann, 177–215 (Göttingen, Germany: Universitätsverlag Göttingen, 2011); and Philip Slavin, “The Great Bovine Pestilence and its Economic and Environmental Consequences in England and Wales, 1318–1350,” Economic History Review 65, no. 4 (2012): 1239–1266.

  • 9. Peter W. Gething, et al., “A New World Malaria Map: Plasmodium falciparum Endemicity in 2010,” Malaria Journal 10, no. 378 (2011); and Peter W. Gething et al., “A Long Neglected World Malaria Map: Plasmodium vivax Endemicity in 2010,” PLoS Neglected Tropical Diseases 6, no. 9 (2012): e1814.

  • 10. There are at least five species of plasmodia that regularly infect humans. It has been suggested that the others beside the human-adapted vivax and falciparum are of even greater antiquity. See Gavin G. Rutledge et al., “Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution,” Nature 542 (Feb. 2, 2017): 101–104.

  • 11. Weimin Liu et al., “Origin of the Human Malaria Parasite Plasmodium falciparum in Gorillas,” Nature 467 (September 23, 2010): 420–425; Weimin Liu et al., “African Origin of the Malaria Parasite Plasmodium vivax,” Nature Communications 5, no. 3346 (2014); and Sesh A. Sundararaman et al., “Genomes of Cryptic Chimpanzee Plasmodium Species Reveal Key Evolutionary Events Leading to Human Malaria,” Nature Communications 7, no. 11078 (2016).

  • 12. Zahi Hawass et al., “Ancestry and Pathology in King Tutankhamun’s Family,” JAMA 303, no. 7 (2010): 638–647. Tutankhamun ruled from 1333 to 1324 BCE.

  • 13. Kyle Harper, The Fate of Rome: Climate, Disease, and the End of an Empire (Princeton, NJ: Princeton University Press, 2017), 84–88; and Timothy P. Newfield, “Malaria and Malaria-Like Disease in the Early Middle Ages,” Early Medieval Europe 25, no. 3 (2017): 251–300.

  • 14. Gwen Robbins et al., “Ancient Skeletal Evidence for Leprosy in India (2000 BC),” PLoS One 4, no. 5 (2009): e5669, 1–8.

  • 15. An African origin of M. leprae was proposed as one of two hypotheses in Marc Monot et al., “On the Origin of Leprosy,” Science 308 (May 13, 2005): 1140–1142, which first established the lineage numbering system for M. leprae. In Marc Monot et al., “Comparative Genomic and Phylogeographic Analysis of Mycobacterium leprae,” 41, no. 12 (December 2009): 1282–1289, similarly based on modern genetic samples but here adding data from a partial reconstruction of genetic material from a burial in 5th-century Egypt, Monot and colleagues affirmed an East African origin of the disease. A substantial revision of the phylogeny, plus the positing of a more ancestral Lineage 0, appears in Verena J. Schuenemann et al., “Genome-wide Comparison of Medieval and Modern Mycobacterium leprae,” Science 341 (July 12, 2013): 179–183, which has, in my opinion, thrown the assumed African origin of M. leprae into question. A long-term study of leprosy in Hungary, based on ten thousand samples, found leprosy present in the late Copper Age (3800–3500 BCE), followed by a long period of absence. It reappeared in the late Roman period and continued until the later Middle Ages. See György Pálfi et al., “Osteoarchaeological and Paleomicrobiological Evidence of Leprosy in Hungary,” The 83rd Annual Meeting of the American Association of Physical Anthropologists, April 810, 2014, Calgary, Canada. Special Issue: S1 Supplement 58: 213; and Kitti Köhler et al., “Possible Cases of Leprosy from the Late Copper Age (3780-3650 cal BC) in Hungary,” PLoS ONE 12, no. 10 (2017): e0185966.

  • 16. As noted above, while there are indeed two species of leprosy bacteria, the more recently discovered one, Mycobacterium lepromatosis, has not yet been confirmed to have played any role in medieval Eurasia. There is not yet any palaeopathogical method to distinguish infection of M. leprae from M. lepromatosis, and no aDNA of the latter organism has yet been found.

  • 17. Schuenemann et al., 2013. See also Pushpendra Singh et al., “Insight into the Evolution and Origin of Leprosy Bacilli from the Genome Sequence of Mycobacterium lepromatosis,” PNAS 112, no. 14 (2015): 4459–4464.

  • 18. Charlotte Avanzi et al., “Red Squirrels in the British Isles are Infected with Leprosy Bacilli,” Science 354, no. 6313 (Nov. 1, 2016): 744–747; Helen M. Butler et al., “Further Evidence of Leprosy in Isle of Wight Red Squirrels,” Veterinary Record 180 (April 22, 2017): 407. The suggested divergence between strains of M. lepromatosis leaves open the possibility that it entered the Americas with the First Peoples, but there is no other evidence one way or another at the time of this writing for its deeper history.

  • 19. Encyclopedia of Life.

  • 20. Schuenemann 2013. See also Singh 2015.

  • 21. For example, three burial sites in the Spanish town of Pamplona yields skeletal evidence suggestive of leprosy in Roman (2nd–4th century), Visigothic (7th–9th century), and Islamic (8th century) periods. See M. P. De Miguel Ibáñez et al., “Tres posibles casos de lepra en la Plaza del Castillo (Pamplona, Navarra),” in Paleopatología: ciencia multidisciplinar, ed. A. González Martín, O. Cambra-Moo, J. Rascón Pérez, M. Campo Martín, M. Robledo Acinas, E. Labajo González, and J. A. Sánchez Sánchez, 355–365 (Madrid: Sociedad Española de Paleopatología, 2011). A summary of findings to date can be found in Sarah A. Inskip et al., “Osteological, Biomolecular and Geochemical Examination of an Early Anglo-Saxon Case of Lepromatous Leprosy,” PLoS ONE 10, no. 5 (2015): e0124282. See also Ruth I. Meserve, “A Ravaging Disease in Medieval Central Eurasia: Leprosy,” Central Eurasia in the Middle Ages: Studies in Honour of Peter B. Golden, ed. István Zimonyi and Osman Karatay, Turcologica, 104, 265–274 (Wiesbaden, Germany: Harrassowitz, 2016), though note that she has not taken into account the work of Schuenemann et al., 2013.

  • 22. Importantly, Monot et al. 2009 (p. 1287) reported that the 5th-century individual in Dakhleh Oasis, Egypt, found to be carrying a lineage 3 M. leprae strain (which Monot and colleagues assumed should have been associated with Europe) proved, upon analysis, to have an isotopic profile different from that of others buried at the site, suggesting that he was an immigrant. Similarly, the earliest known case of leprosy in England that has been proven by aDNA likewise, dating from the 5th–6th century, likewise appears to be an immigrant; see Inskip et al., 2015.

  • 23. Hannah Barker, “Purchasing a Slave in Fourteenth-Century Cairo: Ibn al-Akfānī’s Book of Observation and Inspection in the Examination of Slaves,” Mamluk Studies Review 19 (2016): 1–23; and Carmel Ferragud, “The Role of Doctors in the Slave Trade during the 14th and 15th Centuries within the Kingdom of Valencia (Crown of Aragon),” Bulletin of the History of Medicine 87 (2013): 143–160.

  • 24. On India: Roland E. Emmerick, “Some Remarks on the History of Leprosy in India,” Indologica Taurinensia 12 (1984): 93–105; Robert Joseph Gallagher, “An Annotated Translation of Chapter 7 of the Carakasaṃhitā Cikitsāsthāna: Leprosy and Other Skin Disorders.” On China: Angela Ki Che Leung, Leprosy in China: A History, Studies of the Weatherhead East Asian Institute, Columbia University (New York: Columbia University Press, 2009). On Islamicate world: Michael W. Dols, “Leprosy in Medieval Arabic Medicine,” Journal of the History of Medicine and Allied Sciences 34, no. 3 (July 1979): 314–333; Michael W. Dols, “D̲j̲ud̲h̲ām,” in Encyclopaedia of Islam, 2d ed, ed. P. Bearman, Th. Bianquis, C. E. Bosworth, E. van Donzel, and W. P. Heinrichs (2012). On Europe: Luke E. Demaitre, Leprosy in Premodern Medicine: A Malady of the Whole Body (Baltimore, MD: Johns Hopkins University Press, 2007); and Carole Rawcliffe, Leprosy in Medieval England (Woodbridge, UK: Boydell & Brewer, 2006).

  • 25. See Inskip et al., 2015.

  • 26. Elma Brenner, “The Leprous Body in Twelfth- and Thirteenth-Century Rouen: Perceptions and Responses,” in The Ends of The Body: Identity and Community in Medieval Culture, eds. Suzanne Conklin Akbari and Jill Ross, 239–259 (Toronto: University of Toronto Press, 2013).

  • 27. Dols, “Leprosy” 1979; Justin Stearns, “Contagion,” Encyclopedia of Islam, 3rd ed. (Leiden, Netherlands: Brill, 2010), 180–182; and Russell Hopley, “Contagion in Islamic Lands: Responses from Medieval Andalusia and North Africa,” Journal for Early Modern Cultural Studies 10, no. 2 (Fall/Winter 2010): 45–64.

  • 28. Koichi Suzuki et al., “Paleopathological Evidence and Detection of Mycobacterium leprae DNA from Archaeological Skeletal Remains of Nabe-kaburi (Head-Covered with Iron Pots) Burials in Japan,” PLoS ONE 9, no. 2 (2014): e88356.

  • 29. Brenda J. Baker and Katelyn L. Bolhofner, “Biological and Social Implications of a Medieval Burial from Cyprus for Understanding Leprosy in the Past,” International Journal of Paleopathology 4, no. 1 (2014): 17–24.

  • 30. Igor V. Babkin and Irina N. Babkina, “A Retrospective Study of the Orthopoxvirus Molecular Evolution,” Infection, Genetics and Evolution 12, no. 8 (December 2012): 1597–1604. On the date of domestication of Camelus dromedarius, see Fiona B. Marshall et al., “Evaluating the Roles of Directed Breeding and Gene Flow in Animal Domestication,” Proceedings of the National Academy of Sciences 111, no. 17 (April 29, 2014): 6153–6158.

  • 31. Elio Lo Cascio, L’Impatto della ‘Peste Antonina’ (Santo Spirito [Bari], Italy: Edipuglia, 2012). Harper 2017, 98–115 and 174–175, now offers the best assessment of the identification of the disease as smallpox on the basis of the extant textual evidence. On what seems to be smallpox in the 5th and 7th centuries, see p. 329, n. 76.

  • 32. G. Jan Meulenbeld, A History of Indian Medical Literature, 5 vols. (Groningen, Netherlands: Egbert Forsten, 1999–2002), vol. IIA, 63–64; vol. IIB, 76–77.

  • 33. Green 2017, 505–510; Chia-feng Chang, “Aspects of Smallpox and its Significance in Chinese History,” PhD diss., School of Oriental and African Studies, 1996; Chia-Feng Chang, “Dispersing the Foetal Toxin of the Body: Conceptions of Smallpox Aetiology in Pre-modern China,” in Contagion: Perspectives from Pre-Modern Societies, eds. Lawrence I. Conrad and Dominik Wujastyk, 23–38 (Aldershot, UK: Ashgate, 2000).

  • 34. William H. Foege, J. Donald Millar, and J. Michael Lane, “Selective Epidemiologic Control in Smallpox Eradication,” American Journal of Epidemiology 94, no. 4 (1971): 311–315, esp. 311.

  • 35. Pan S. Codellas, “The Case of Smallpox of Theodorus Prodromus,” Bulletin of the History of Medicine 20 (1946): 207–215; and John Lascaratos and Constantine Tsiamis, “Two Cases of Smallpox in Byzantium,” International Journal of Dermatology 41, no. 11 (2002): 792–795.

  • 36. Lutfallah Gari, “Arabic Treatises on Environmental Pollution up to the End of the Thirteenth Century,” Environment and History 8, no. 4 (November 2002): 475–488; my thanks to Nahyan Fancy for this citation. See also Emilie Savage-Smith, “New Evidence for the Frankish Study of Arabic Medical Texts in the Crusader Period,” Crusades 5 (2006): 99−112.

  • 37. Al-Beruni’s India, ed. E. Sachau, 2nd ed., 2 vols. (London, 1910), vol. 1, 309. My thanks to André Wink for alerting me to al-Biruni’s testimony, which has not previously been noted in smallpox historiography. On al-Biruni’s ties to the Khwarazm court, see D. J. Boilot, “al-Bīrūnī,” in Encyclopaedia of Islam, 2nd ed., eds. P. Bearman, Th. Bianquis, C. E. Bosworth, E. van Donzel, and W. P. Heinrichs (2012); for a survey of his oeuvre, see Michio Yano, “al-Bīrūnī,” in Encyclopaedia of Islam, 3rd ed., eds. Kate Fleet et al. (2013).

  • 38. Ralph W. Nicholas, “The Goddess Śītalā and Epidemic Smallpox in Bengal,” The Journal of Asian Studies 41, no. 1 (November 1981): 21–44. My thanks to Anne Feldhaus for this reference.

  • 39. Joseph Needham, with the collaboration of Lu Gwei‐djen, “China and the Origins of Immunology,” in Science and Civilisation in China, vol. VI, Biology and Biological Technology, Part 6: Medicine, ed. Nathan Sivin, 114–174 (Cambridge, UK: Cambridge University Press, 2000); Chang 1996; and Chang 2000. I have updated the names of Ge Hong and Tao Hongjing to standard Pinyin forms (the forms in Needham were “Ko Hung” and “Thao Hung-ching”).

  • 40. Chang 1996, 54–55. Although the role of menstrual blood is not mentioned in al-Razi (see Rhazes, A Treatise on the Smallpox and Measles, trans. William Alexander Greenhill, London: Sydenham Society, 1848), it is found in writers such as al-Majusi; see Leven 1993, 349–350.

  • 41. Akihito Suzuki, “Smallpox and the Epidemiological Heritage of Modern Japan: Towards a Total History,” Medical History 55 (2011): 313–318.

  • 42. Cristina Álvarez Millán, “The Case History in Medieval Islamic Medical Literature: Tajarib and Mujarrabat as Source,” Medical History 54 (2010): 195–214, esp. 201–202.

  • 43. Paul Richter, “Beiträge zur Geschichte der Pocken bei den Arabern,” Archiv für Geschichte der Medizin 5 (1912): 311–331; and Karl-Heinz Leven, “Zur Kenntnis der Pocken in der arabischen Medizin, im lateinischen Mittelalter und in Byzanz,” in Die Begegnung des Westens mit dem Ostens. Kongreßakten des 4. Symposions des Mediävistenverbandes in Köln 1991 aus Anlaß des 1000. Todesjahres der Kaiserin Theophanu, eds. Odilo Engels and Peter Schreiner, 341–354 (Sigmaringen, Germany: Thorbecke, 1993).

  • 44. Yves Darton, et al., “Osteomyelitis variolosa: A Probable Mediaeval Case Combined with Unilateral Sacroiliitis,” International Journal of Paleopathology 3, no. 4 (2013): 288–293.

  • 45. Ann G. Carmichael and Arthur M. Silverstein, “Smallpox in Europe Before the Seventeenth Century: Virulent Killer or Benign Disease?,” Journal of the History of Medicine and Allied Sciences 42 (1987): 147–168. Note that Carmichael and Silverstein’s suggestion that Variola minor, a far less lethal strain of smallpox, evolutionarily preceded Variola major, has been falsified by modern genetics studies, which locates the emergence of V. minor as late as the 19th century; see Ana T. Duggan et al., “17th Century Variola Virus Reveals the Recent History of Smallpox,” Current Biology 26, no. 24 (December 19, 2016): 3407–3412.

  • 46. Hans van den Broek, “Genezing van blindheid na pokken of mazelen: Nederlandse mirakelverhalen, 14e-18e eeuw [Recovery from blindness following smallpox or measles: Dutch miracle stories, 14th-18th century],” Nederlands Tijdschrift voor Geneeskunde 154, no. A1853 (2010).

  • 47. Ridolfo Livi, La schiavitù domestica nei tempi di mezzo e nei moderni (Padua, Italy: Antonio Milani, 1928). My thanks to Hannah Barker for bringing this study to my attention, and sharing with me her valuable insights about this unique register.

  • 48. Eradication has also left some unresolved questions about the virus’s clinical manifestations. See J. Michael Lane, “Remaining Questions about Clinical Variola Major,” Emerging Infectious Diseases 17, no. 4 (April 2011): 676–680.

  • 49. Duggan et al., 2016.

  • 50. In addition to Carmichael and Silverstein 1987, Needham and Lu 2000, and Suzuki 2011, see Peter Boomgaard, “Smallpox, Vaccination, and the Pax Neerlandica: Indonesia, 1550–1930,” Bijdragen tot de Taal-, Land- en Volkenkunde 159, no. 4 (2003): 590–617; John C. Riley, “Smallpox and American Indians Revisited,” Journal of the History of Medicine and Allied Sciences 65 (2010): 445–477; and Günhan Börekçi, “Smallpox in the Harem: Communicable Diseases and the Ottoman Fear of Dynastic Extinction during the Early Sultanate of Ahmed I (r. 1603–1617),” in Plague and Contagion in the Islamic Mediterranean, ed. Nükhet Varlık, 135–152 (Kalamazoo, MI: ARC Humanities Press, 2017).

  • 51. The claims made in the 1980s by Joseph Needham and Lu Gwei‐djen that inoculation was discovered in China by at least the 11th century have been challenged by their own editor, Nathan Sivin. See Needham, Lu, and Sivin, “China and the Origins of Immunology,” 169–174.

  • 52. Giovanna Morelli et al., “Yersinia pestis Genome Sequencing Identifies Patterns of Global Phylogenetic Diversity,” Nature Genetics 42, no. 12 (2010): 1140–1145; and Yujun Cui et al., “Historical Variations in Mutation Rate in an Epidemic Pathogen, Yersinia pestis,” PNAS 110, no. 2 (2013): 577–582.

  • 53. S. Rasmussen et al., “Early Divergent Strains of Yersinia Pestis in Eurasia 5000 Years Ago,” Cell 163 (2015): 571–582; and Aida Andrades Valtueña et al., “The Stone Age Plague and Its Persistence in Eurasia,” Current Biology 27, no. 23 (December 4, 2017): 3683–3691.e8.

  • 54. Stephanie Haensch et al., “Distinct Clones of Yersinia pestis Caused the Black Death,” PLoS Pathogens 6, no. 10 (2010): e1001134; Kirsten I. Bos et al., “A Draft Genome of Yersinia pestis from Victims of the Black Death,” Nature 478, no. 7370 (2011): 506–510; David M Wagner et al., “Yersinia pestis and the Plague of Justinian, 541–543 AD: A Genomic Analysis,” Lancet Infectious Diseases 14, no. 4 (2014): 319–326; Kirsten I Bos et al., “Eighteenth Century Yersinia pestis Genomes Reveal the Long-Term Persistence of an Historical Plague Focus,” eLife 5 (2016): e12994; Maria A. Spyrou et al., “Historical Y. pestis Genomes Reveal the European Black Death as the Source of Ancient and Modern Plague Pandemics,” Cell Host and Microbe 19, no. 6 (8 June 2016): 874–881; Michal Feldman et al., “A High-Coverage Yersinia pestis Genome from a 6th-Century Justinianic Plague Victim,” Molecular Biology and Evolution 33, no. 11 (2016): 2911–2923.

  • 55. Lester K. Little, ed., Plague and the End of Antiquity: The Pandemic of 541–750 (Cambridge, UK: Cambridge University Press, 2007).

  • 56. Denis Twitchett, “Population and Pestilence in T’ang China,” in Studia Sino-Mongolia: Festschrift für Herbert Franke, eds. Wolfgang Bauer, Münchener ostasiatische Studien 25, 35–67 (Wiesbaden, Germany: Franz Steiner Verlag, 1979).

  • 57. On the SNPs, see Feldman et al. 2016, Supplementary Materials, Table S9.

  • 58. M. Sigl et al., “Timing and Climate Forcing of Volcanic Eruptions for the Past 2,500 Years,” Nature 523 (30 July 30, 2015): 543–549; Ulf Büntgen et al., “Cooling and Societal Change during the Late Antique Little Ice Age from 536 to around 660AD,” Nature Geoscience 9 (2016): 231–236.

  • 59. Nils Chr. Stenseth et al., “Plague Dynamics are Driven by Climate Variation,” Proceedings of the National Academy of Sciences 103, no. 35 (2006): 13110–13115; Tamara Ben Ari et al., “Plague and Climate: Scales Matter,” PLoS Pathogens 7, no. 9 (2011): e1002160; and Kenneth L. Gage, “Factors Affecting the Spread and Maintenance of Plague,” in Advances in Yersinia Research, eds. Alzira Maria Paiva de Almeida and Nilma Cintra Leal, special issue, Advances in Experimental Medicine and Biology 954, no. 1 (2012): 79–94.

  • 60. Ole Benedictow, The Black Death, 1346–1353: The Complete History (Woodbridge, UK: Boydell, 2004); and Stuart Borsch and Tarek Sabraa, “Refugees of the Black Death: Quantifying Rural Migration for Plague and Other Environmental Disasters,” Annales de Démographie Historique 2017 N°2, no. 134, 63–93.

  • 61. See Monica H. Green and Boris Schmid, “Tiny Changes with Huge Implications: Counting SNPs in Plague’s History,” Contagions blog, ed. Michelle Ziegler, (June 27, 2016).

  • 62. Bruce Campbell, The Great Transition: Climate, Disease and Society in the Late Medieval World (Cambridge, UK: Cambridge University Press, 2016); Chantal Camenisch et al., “The 1430s: A Cold Period of Extraordinary Internal Climate Variability During the Early Spörer Minimum With Social and Economic Impacts in North-Western and Central Europe,” Climate of the Past 12 (2016): 2107–2126.

  • 63. James Belich, “The Black Death and the Spread of Europe,” in The Prospect of Global History, ed. James Belich, John Darwin, Margret Frenz, and Chris Wickham, 93–107 (Oxford: Oxford University Press, 2016); Stuart Borsch, “Plague Depopulation and Irrigation Decay in Medieval Egypt,” The Medieval Globe 1 (2014): 125–156; Nükhet Varlık, Plague and Empire in the Early Modern Mediterranean World: The Ottoman Experience, 1347–1600 (Cambridge, UK: Cambridge University Press, 2015); and Nükhet Varlık, ed., Plague and Contagion in the Islamic Mediterranean (Kalamazoo, MI: ARC Humanities Press, 2017).

  • 64. This was the second genome that was announced in 2011 as coming from the London Black Death Cemetery (Bos et al., 2011), but was in fact from a later cemetery, likely from the 1360s, called St Mary Graces.

  • 65. Spyrou et al., 2016.

  • 66. Monica H. Green, “Putting Africa on the Black Death Map: Narratives from Genetics and History,” special issue of Afriques (forthcoming).

  • 67. The SNPs (single nucleotide polymorphisms) that are used to track the genetic evolution of Y. pestis take their origin in a genetic change of one single cell. That single cell then must have the extraordinary good fortune to replicate many millions of times in order to “seed,” first, an animal outbreak, and then a human outbreak. So, every new lineage that is established starts with one single cell, and therefore with one single animal host.

  • 68. William H. McNeill, Plagues and Peoples (New York: Anchor Press, 1976; rev. ed. 1998).

  • 69. Robert Hymes, “A Hypothesis on the East Asian Beginnings of the Yersinia pestis Polytomy,” The Medieval Globe 1 (Fall 2014): 285–308.

  • 70. Cui et al., “Historical Variations in Mutation Rate in an Epidemic Pathogen, Yersinia pestis”; Ekaterine Zhgenti et al., “Genome Assemblies for 11 Yersinia pestis Strains Isolated in the Caucasus Region,” Genome Announcements 3, no. 5 (2015): e01030–15; Galina A. Eroshenko et al., “Yersinia pestis Strains of Ancient Phylogenetic Branch 0.ANT Are Widely Spread in the High-Mountain Plague Foci of Kyrgyzstan,” PLoS ONE 12, no. 10 (2017): e0187230.

  • 71. Sébastien Guillet et al., “Climate Response to the Samalas Volcanic Eruption in 1257 Revealed by Proxy Records,” Nature GeoScience 10 (February 2017): 123–129; Sébastien Guillet, et al., “Climate Response to the Samalas Volcanic Eruption in 1257 Revealed by Proxy Records,” Nature Geoscience 10 (2017): 123–128; Frank Ludlow, “Chronicling a Medieval Eruption,” Nature Geoscience 10 (February 2017): 77–78; Bruce M. S. Campbell, “Global Climates, the 1257 Mega-Eruption of Samalas Volcano, Indonesia, and the English Food Crisis of 1258,” Transactions of the Royal Historical Society 27 (2017): 87–121.

  • 72. Campbell 2016.

  • 73. N. Yu Nosov et al., “ФилогенетическийанализштаммовYersinia pestis средневековогобиовараизприродныхочагов чумыРоссийскойФедерацииисопредельныхстран‎ [Phylogenetic Analysis of Yersinia pestis Strains of Medieval Biovar from Natural Plague Foci of the Russian Federation and Bordering Countries],” Problemy Osobo Opasnykh Infektsii [Problems of Particularly Dangerous Infections] 2 (2016): 75–78 (in Russian).

  • 74. Neil Pederson et al., “Pluvials, Droughts, the Mongol Empire, and Modern Mongolia,” PNAS 111, no. 12 (2014): 4375–4379; see also Ulf Büntgen and Nicola Di Cosmo, “Climatic and Environmental Aspects of the Mongol Withdrawal from Hungary in 1242 CE,” Scientific Reports 6, no. 25606 (2016).

  • 75. This summary of the history of medicine describes a professional discipline within history. There is another genre of history of medicine that appears within biomedical journals, but is not normally peer-reviewed by historians.

  • 76. Angela Ki Che Leung, Leprosy in China: A History, Studies of the Weatherhead East Asian Institute, Columbia University (New York: Columbia University Press, 2009); Luke E. Demaitre, Leprosy in Premodern Medicine: A Malady of the Whole Body (Baltimore, MD: Johns Hopkins University Press, 2007); and Carole Rawcliffe, Leprosy in Medieval England (Woodbridge, UK: Boydell & Brewer, 2006).

  • 77. For example, Lawrence I. Conrad and Dominik Wujastyk, eds. Contagion: Perspectives from Pre-Modern Societies (Aldershot, UK: Ashgate 2000); and Justin K. Stearns, Infectious Ideas: Contagion in Premodern Islamic and Christian Thought in the Western Mediterranean (Baltimore, MD: Johns Hopkins University Press, 2011).

  • 78. Jon Arrizabalaga, “Problematizing Retrospective Diagnosis in the History of Disease,” Asclepio 54, no. 1 (2002): 51–70; Cristina Álvarez Millán, “Disease in Tenth-Century Iran and Irak According to al-Rāzi’s Casebook,” Suhayl 14 (2014): 49–88. Artistic depictions have been particularly subject to misinterpretation. See Lori Jones and Richard Nevell, “Plagued by Doubt and Viral Misinformation: The Need for Evidence-based Use of Historical Disease Images,” The Lancet Infectious Diseases 16, no. 10 (October 2016): e235–e240.

  • 79. Andrew Cunningham, “Transforming Plague: The Laboratory and the Identification of Infectious Disease,” in The Laboratory Revolution in Medicine, ed. A. Cunningham and P. Williams, 209–244 (Cambridge, UK: Cambridge University Press, 1992).

  • 80. Michael McCormick, “History’s Changing Climate: Climate Science, Genomics, and the Emerging Consilient Approach to Interdisciplinary History,” Journal of Interdisciplinary History 42, no. 2 (Autumn 2011): 251–273; Adam Izdebski et al., “Realising Consilience: How Better Communication Between Archaeologists, Historians and Natural Scientists Can Transform the Study of Past Climate Change in the Mediterranean,” Quaternary Science Reviews 36 (2016): 5–22.

  • 81. It is significant that there are now five major essays, written by historians for the benefit of other historians, on the significance of the new genetics of plague: Lester K. Little, “Plague Historians in Lab Coats,” Past and Present 213 (2011): 267–290; J. L. Bolton, “Looking for Yersinia pestis: Scientists, Historians, and the Black Death,” in Society in an Age of Plague, ed. Linda Clark and Carole Rawcliffe, The Fifteenth Century 12 (2013): 15–38; Monica H. Green, “Taking ‘Pandemic’ Seriously: Making the Black Death Global,” in Pandemic Disease in the Medieval World: Rethinking the Black Death, inaugural issue of The Medieval Globe 1, no. 1–2 (Fall 2014): 27–61; George Dameron, “Identificazione di un killer: recenti scoperte scientifiche e storiche sulla natura della peste nera,” in Boccaccio 1313–2013, ed. Francesco Ciabattoni, Elsa Filosa, and Kristina Marie Olson, 57–70 (Ravenna, Italy: Longo, 2015); and Pierre Toubert, “La Peste Noire (1348), entre Histoire et biologie moléculaire,” Journal des Savants (Janvier-Juin 2016): 17–31.

  • 82. Charlotte L. King et al., “Considering the Palaeoepidemiological Implications of Socioeconomic and Environmental Change in Southeast Asia,” Archaeological Research in Asia, 11 (2017): 27–37.

  • 83. For example, Xavier Didelot, Lilith K. Whittles, and Ian Hall, “Model-Based Analysis of an Outbreak of Bubonic Plague in Cairo in 1801,” Journal of the Royal Society Interface 14, 20170160 (2017).

  • 84. Rosemary Horrox, trans., The Black Death (Manchester: University of Manchester Press, 1994) is the best collection of primary sources, though it covers only Western Europe and has a pronounced focus on materials from England. John Aberth, The Black Death: The Great Mortality of 1348–1350: A Brief History with Documents, The Bedford Series in History and Culture (New York: Palgrave MacMillan, 2005), replicates some of the same materials, but usefully adds documents from al-Andalus. No collection of materials from the Islamicate world has ever been assembled, but see literature cited in Michael Dols, The Black Death in the Middle East (Princeton, NJ: Princeton University Press, 1977). Similarly, no collection of materials on plague in pre-modern China has been assembled; see Hymes 2014 for bibliography.

  • 85. Fuat Sezgin, Geschichte des arabischen Schrifttums. III. Medizin-Pharmazie-Zoologie-Tierheilkunde bis ca. 430 A.H. (Leiden, Netherlands: Brill, 1970); Manfred Ullmann, Die Medizin im Islam (Leiden-Köln, Netherlands: Brill, 1970); A New Catalogue of Arabic Manuscripts in the Bodleian Library, Oxford, Volume 1: Medicine (Oxford: Oxford University Press, 2011); and Peter Pormann and Emilie Savage-Smith, Medieval Islamic Medicine (Edinburgh: University of Edinburgh Press, 2007). On the specific genre of the case history in Arabic medicine, see Álvarez Millán 2014. Dominik Wujastyk, Anthony Cerulli, and Karin Preisendanz, eds., Medical Texts and Manuscripts in Indian Cultural History (New Delhi: Manohar, 2013). Asaf Goldschmidt, The Evolution of Chinese Medicine: Song Dynasty, 960–1200 (New York: Routledge, 2008); Stephen Boyanton, “The Treatise on Cold Damage and the Formation of Literati Medicine: Social, Epidemiological, and Medical Change in China, 1000–1400,” PhD diss., Columbia University, 2015; and Michael Stanley-Baker, “New Digital Tools for the History of Medicine and Religion in China,” China Policy Institute: Analysis, September 27, 2016. In addition to eTK/eVK (see “Links to Digital Materials” below), the following recent surveys are of use: Monica H. Green, “Integrative Medicine: Incorporating Medicine and Health into the Canon of Medieval European History,” History Compass 7, no. 4 (June 2009): 1218–1245; and Elma Brenner, “Recent Perspectives on Leprosy in Medieval Western Europe,” History Compass 8, no. 5 (2010): 388–406.

  • 86. Lynn Thorndike and Pearl Kibre, Catalogue of Incipits of Medieval Scientific Writings in Latin, 2nd ed. rev. (Cambridge, MA: Medieval Academy of America, 1963).

Climate and Disease in Medieval Eurasia (2024)
Top Articles
Gospel and Word of the Day - 11 August 2024 - Vatican News
Morning Edition for July, 12 2024
Winston Salem Nc Craigslist
Trabestis En Beaumont
Unity Stuck Reload Script Assemblies
³µ¿Â«»ÍÀÇ Ã¢½ÃÀÚ À̸¸±¸ ¸íÀÎ, ¹Ì±¹ Ķ¸®Æ÷´Ï¾Æ ÁøÃâ - ¿ù°£ÆÄ¿öÄÚ¸®¾Æ
Hotels Near 500 W Sunshine St Springfield Mo 65807
Stl Craiglist
Jesus Revolution Showtimes Near Chisholm Trail 8
Savage X Fenty Wiki
8 Ways to Make a Friend Feel Special on Valentine's Day
OpenXR support for IL-2 and DCS for Windows Mixed Reality VR headsets
24 Hour Walmart Detroit Mi
Nba Rotogrinders Starting Lineups
Youravon Comcom
Unlv Mid Semester Classes
Tnt Forum Activeboard
Aldi Süd Prospekt ᐅ Aktuelle Angebote online blättern
Troy Bilt Mower Carburetor Diagram
Erica Banks Net Worth | Boyfriend
Site : Storagealamogordo.com Easy Call
Pinellas Fire Active Calls
Craigslist Prescott Az Free Stuff
2013 Ford Fusion Serpentine Belt Diagram
University Of Michigan Paging System
Cb2 South Coast Plaza
Radical Red Ability Pill
Combies Overlijden no. 02, Stempels: 2 teksten + 1 tag/label & Stansen: 3 tags/labels.
4.231 Rounded To The Nearest Hundred
Pixel Combat Unblocked
Ellafeet.official
Vistatech Quadcopter Drone With Camera Reviews
Metra Union Pacific West Schedule
24 slang words teens and Gen Zers are using in 2020, and what they really mean
Amici Pizza Los Alamitos
Senior Houses For Sale Near Me
Metro By T Mobile Sign In
Powerspec G512
Craigs List Jonesboro Ar
Daly City Building Division
Gt500 Forums
Subdomain Finder
Shipping Container Storage Containers 40'HCs - general for sale - by dealer - craigslist
Theater X Orange Heights Florida
Cvs Coit And Alpha
Amateur Lesbian Spanking
Here’s What Goes on at a Gentlemen’s Club – Crafternoon Cabaret Club
Understanding & Applying Carroll's Pyramid of Corporate Social Responsibility
Joe Bartosik Ms
How To Find Reliable Health Information Online
Ff14 Palebloom Kudzu Cloth
Latest Posts
Article information

Author: Ms. Lucile Johns

Last Updated:

Views: 6252

Rating: 4 / 5 (41 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Ms. Lucile Johns

Birthday: 1999-11-16

Address: Suite 237 56046 Walsh Coves, West Enid, VT 46557

Phone: +59115435987187

Job: Education Supervisor

Hobby: Genealogy, Stone skipping, Skydiving, Nordic skating, Couponing, Coloring, Gardening

Introduction: My name is Ms. Lucile Johns, I am a successful, friendly, friendly, homely, adventurous, handsome, delightful person who loves writing and wants to share my knowledge and understanding with you.